
Recurring Satistics
Paolo Bosetti

2024-Nov-22

Rationale

This memo reports the calculation scheme that can be adopted for calculating sample mean
and variance statistics by using a pair of recurrence formulas. This approach comes handy
whenever you have to perform a continuous, inline assessment of those indicators with mini-
mum memory footprint (e.g. on microcontrollers), without the need of storing the whole set
of sample values.

Sample Mean

This is an easy one: given the stochastic variable 𝑥 and by indicating its sample mean for a
set of 𝑖 observations as ̄𝑥𝑖, we have:

̄𝑥1 ∶= 𝑥1 (1)
̄𝑥𝑛 = 1

𝑛 ∑𝑛
𝑖=1 𝑥𝑖 (2)

= 𝑛−1
𝑛 (∑𝑛−1

𝑖=1
𝑥𝑖

𝑛−1) + 𝑥𝑛
𝑛 (3)

= 1
𝑛 ((𝑛 − 1) ̄𝑥𝑛−1 + 𝑥𝑛) (4)

where 𝑥𝑛 is the current observation (after 𝑛 events), and 𝑥1 is the very first observation.

By using the last equation for ̄𝑥𝑛, the sample mean value ̄𝑥𝑛 can be continuously updated at
every acquisition using only the last observation 𝑥𝑛, the previous value of the sample mean

̄𝑥𝑛−1, and the total number of observations 𝑛. There is no need for storing the whole set
of observations, and the algorithm complexity is 𝑂(1).

1

Sample variance

The recurrence formula for sample variance is a little more complex, and care must be payed
in the formulation in order to avoid differences between small quantities, which may bring to
large rounding errors.

By definition of sample variance for 𝑛 observations, 𝑠2
𝑛:

𝑠2
𝑛 =

𝑛
∑
𝑖=1

(̄𝑥𝑛 − 𝑥𝑖)2

𝑛 − 1 = 𝑆𝑆𝑛
𝑛 − 1 (5)

= 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥2
𝑖 − 2𝑥𝑖 ̄𝑥 + ̄𝑥2) (6)

= 1
𝑛 − 1 (

𝑛
∑
𝑖=1

𝑥2
𝑖 − ̄𝑥2) (7)

𝑠𝑛 =
√√√
⎷

1
𝑛 − 1

⎛⎜
⎝

𝑛
∑
𝑖=1

𝑥2
𝑖 − 1

𝑛 (
𝑛

∑
𝑖=1

𝑥𝑖)
2
⎞⎟
⎠

(8)

The sum of squares 𝑆𝑆𝑛 (which is the only part in the definition of sample variance that is
depending on previous values) can be thus be expressed as:

𝑆𝑆𝑛 = ⎛⎜
⎝

𝑛
∑
𝑖=1

𝑥2
𝑖 − 1

𝑛 (
𝑛

∑
𝑖=1

𝑥𝑖)
2
⎞⎟
⎠

(9)

so that the increment in sum of squares can be obtained:

𝑆𝑆𝑛 − 𝑆𝑆𝑛−1 =
𝑛

∑
1=1

𝑥2
𝑖 − 1

𝑛 (
𝑛

∑
1=1

𝑥𝑖)
2

−
𝑛−1
∑
1=1

𝑥2
𝑖 + 1

𝑛 − 1 (
𝑛−1
∑
1=1

𝑥𝑖)
2

(10)

where we can substitute:
𝑛

∑
1=1

𝑥𝑖 = 𝑛 ̄𝑥𝑛 (11)

𝑛−1
∑
1=1

𝑥𝑖 =
𝑛

∑
1=1

𝑥𝑖 − 𝑥𝑛 = 𝑛 ̄𝑥𝑛 − 𝑥𝑛 (12)

𝑛
∑
1=1

𝑥2
𝑖 −

𝑛−1
∑
1=1

𝑥2
𝑖 = 𝑥2

𝑛 (13)

2

thus having:

𝑆𝑆𝑛 − 𝑆𝑆𝑛−1 = 𝑥2
𝑛 − 1

𝑛(𝑛 ̄𝑥𝑛)2 + 1
𝑛 − 1(𝑛 ̄𝑥𝑛 − 𝑥𝑛)2 (14)

= 𝑥2
𝑛 − 𝑛 ̄𝑥2

𝑛 + 1
𝑛 − 1(𝑛2 ̄𝑥2

𝑛 − 2𝑛 ̄𝑥𝑛𝑥𝑛 + 𝑥2
𝑛) (15)

= 1
𝑛 − 1(𝑛𝑥2

𝑛 + 𝑛 ̄𝑥2
𝑛 − 2𝑛 ̄𝑥𝑛𝑥𝑛) (16)

= 𝑛
𝑛 − 1(̄𝑥𝑛 − 𝑥𝑛)2 (17)

after which we have the recurrence formula for the sum of squares:

𝑆𝑆𝑛 = 𝑆𝑆𝑛−1 + 𝑛
𝑛 − 1(̄𝑥𝑛 − 𝑥𝑛)2 (18)

Accordingly, the recurrence formula for the sample standard deviation (square root of variance)
is:

𝑠1 ∶= 0 (19)

𝑠𝑛 = √ 1
𝑛 − 1 ((𝑛 − 2)𝑠2

𝑛−1 + 𝑛
𝑛 − 1(̄𝑥𝑛 − 𝑥𝑛)2) (20)

In conclusion, a typical pseudocode for running calculation of ̄𝑥 and 𝑠 indicators is as follows:
Require: read_value(): returns a new observation of 𝑥 at each call

1: ̄𝑥 ← read_value() ▷ Initializations
2: 𝑠 ← 0
3: 𝑛 ← 1
4: repeat ▷ Main loop
5: 𝑛 ← 𝑛 + 1
6: 𝑥 ← read_value()
7: ̄𝑥 ← 1

𝑛 ((𝑛 − 1) ̄𝑥 + 𝑥) ▷ Update sample mean
8: 𝑠 ← √ 1

𝑛−1 ((𝑛 − 2)𝑠2 + 𝑛
𝑛−1(̄𝑥 − 𝑥)2) ▷ Update sample std. dev.

9: Perform operations on ̄𝑥 and 𝑠
10: until exit condition is true

R implementation

The following R code implements the above pseudocode, with some care to make it fun to use
and pipe-ready:

3

rstats <- function(prev, x=NULL, echo=FALSE) {
result <- list(mean=NA, sd=0, n=0)
if (!is.list(prev)) {

v <- prev
result$mean <- v
result$n <- 1

} else {
n <- prev$n + 1
m <- 1/n * ((n-1) * prev$mean + x)
s <- ifelse(n > 1, sqrt(1/(n-1) * ((n-2) * prev$sd^2 + n/(n-1) * (m - x)^2)), 0)
result$mean <- m
result$sd <- s
result$n <- n

}
if (echo)

cat(sprintf("n: %d, mean: %.2f, sd: %.2f\n",
result$n, result$mean, result$sd))

invisible(result)
}

Simple use:

rstats(10) %>% rstats(11) %>% rstats(12, echo=T)

n: 3, mean: 11.00, sd: 1.00

To be compared with:

v <- 10:12
cat(sprintf("mean: %.2f, sd: %.2f, n: %d\n", mean(v), sd(v), length(v)))

mean: 11.00, sd: 1.00, n: 3

Thanks to how we built the rstats function, we can use it in a dplyr pipeline using
purrr::accumulate():

set.seed(0)
df <- tibble(
i=1:100,
x=rnorm(100, mean=10, sd=2)

4

) %>%
mutate(

Warn: the first element of the list is the initial value of the
accumulator
This creates a list column with the stats at each step
stats=accumulate(
x,
~ rstats(.x, .y),
.init=list(mean=first(x), sd=0, n=0))[2:(n()+1)],

usual cumulative stats:
mean = cummean(x),
sd = imap_dbl(x, ~ sd(x[1:.y]))

) %>%
unnest the list column
hoist(stats, rmean=1, rsd=2) %>%
mutate(

mean = mean - rmean,
sd = sd - rsd

) %>%
pivot_longer(cols=c(mean, sd), names_to="statistic", values_to="difference")

df %>%
ggplot(aes(x=i, y=difference)) +
geom_line(aes(color=statistic))

5

−2.309264e−15

6.217249e−16

3.552714e−15

6.483702e−15

9.414691e−15

0 25 50 75 100
i

di
ffe

re
nc

e statistic

mean

sd

So the recursion formulas do suffer from numerical precision, but the difference is not that
big.

Cpp implementation

Much more interesting is the C/C++ implementation of the same algorithm. The following
code is a simple, pure C implementation, plus a Rcpp wrapper to make it available in R with
an interface similar to the R version:

#include "Rcpp.h"
using namespace Rcpp;

// Pure C version. n, mean and sd are IN/OUT parameters:
void rstats_c(double x, unsigned long int *n, double *mean, double *sd) {

if (*n == 0) {
*mean = x;
*sd = 0;
*n += 1;

} else {
*n += 1;

6

double m = 1.0/ *n * ((*n-1) * (*mean) + x);
double s = sqrt(1.0/(*n-1.0) * ((*n-2) * pow(*sd, 2) +

*n/(*n-1.0) * pow(m - x, 2)));
*mean = m;
*sd = s;

}
}

//[[Rcpp::export]]
List rstats(List &prev, double x) {
double mean = prev["mean"];
double sd = prev["sd"];
unsigned long int n = prev["n"];
rstats_c(x, &n, &mean, &sd);
return List::create(

Named("n") = n,
Named("mean") = mean,
Named("sd") = sd

);
}

Now we can use the C++ version in R, paying attention that the C++ version interface is less
smarter and it needs to have an initial zeroed list as input on the frst call:

rstats(list(mean = 0, sd=0, n=0), 10) %>% rstats(11) %>% rstats(12)

$n
[1] 3

$mean
[1] 11

$sd
[1] 1

7

	Rationale
	Sample Mean
	Sample variance
	R implementation
	Cpp implementation

