
K-Fold Cross Validation

Paolo Bosetti

Last change: 20241205

Table of contents
1 Loading the data 1

2 Linear model regression 2

3 Multiple regressions 4

4 K-fold cross-validation 6

5 Regression 9

1 Loading the data
We load the data from a web address and make a quick plot:
data <- read_csv("https://paolobosetti.quarto.pub/data/kfold.csv",

show_col_types = FALSE)
data %>% ggplot(aes(x=x, y=y)) + geom_point()

1

20

40

60

0 25 50 75 100
x

y

2 Linear model regression
The regression of a linear model is performed with the lm() function. It takes
two arguments:

• a formula, i.e. a description of the regression model
• a data table, containing the data set to use for regression. The columns

of the data set must have the same names used for the predictors

The formula is expressed in the formula notation, which is a map from an
analytical regression model, as 𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑐𝑥2

𝑖 + 𝜀𝑖 to a formula object as
y~x + I(x^2)

To build a formula from a model you typically:

• drop the grand average 𝑎 and the residuals 𝜀𝑖
• when you need the power of a term (or any mathematical function applied

to a term like a logarithm), you have to protect it with the identity function
I()

• if you have more than one predictor, you can combine them as y~x1 + x2,
which corresponds to 𝑦𝑖 = 𝑎 + 𝑏𝑥1,𝑖 + 𝑐𝑥2,1 + 𝜀𝑖 or as y~x1 + x2 + x1:x2,
which corresponds to 𝑦𝑖 = 𝑎 + 𝑏𝑥1,𝑖 + 𝑐𝑥2,1 + 𝑑𝑥1,𝑖𝑥2,𝑖 + 𝜀𝑖

• the notation y~x1 + x2 + x1:x2 can be abbreviated as y~x1*x2
• to remove from the model the grand average (called intercept), subtract

1: 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑐𝑥2
𝑖 + 𝜀𝑖 becomes y~x + I(x^2) - 1

So let’s build a linear model of degree 2:

2

data.lm <-lm(y~x - 1, data=data)

data %>%
add_predictions(data.lm) %>%
ggplot(aes(x=x)) +
geom_point(aes(y=y)) +
geom_line(aes(y=pred))

0

20

40

60

0 25 50 75 100
x

y

data %>%
add_residuals(data.lm) %>%
ggplot(aes(x=x, y=resid)) +
geom_point()

3

−5

0

5

10

0 25 50 75 100
x

re
si

d

We note that the residuals show a rather strong pattern, meaning that the linear
relationship is underfitting the data, and thus we need to increase the degree of
the fitting polynomial. But how much so?

3 Multiple regressions
The degree of the fitting polynomial is a hyper-parameter. In fact, regression
parameters are the coeffiients of the polynomial, to be calculated typically
by minimizing the root mean square of the residuals. But the degree of the
polynomial is a parameter that defines the number of regression parameters,
and that is why it is named a hyper-parameter. Identifying the best hyper-
parameter(s) is the aim of validation and cross-validation strategies.

In our case we want to compare polynomial fits up to degree 12. We use
modelr::fit_with() to automate the building of many models together. The
function needs two arguments:

• the modeling function, typically lm()
• the results of a call to formulas(), which in turn takes a list of formulas

to be used. This list needs to have only right hand side formulas, being
the first the response variable, the others are the model part combining
the predictors

We first build a list of arguments:
deg <- 2:12
args <- list(
~y, ~x,

4

map(deg, ~as.formula(paste0("~poly(x,", ., ")")))
) %>%
unlist()

Note the usage of unlist() at the end: the previous command returns a nested
list (a list of lists), and unlist() flattens it into a simple plain list of formulas.

Now the formulas() function wants n parameters, each being a formula, while
we have a list of formulas. We can solve this problem by using do.call()
function, which calls a given function passing each element of a list as a separate
argument:
fits <- data %>% fit_with(
lm,
.formulas=do.call(formulas, args)

)

Quality of a regression can be verified with different metrics:

• 𝑅2 = 1 − ∑(𝑥𝑖−�̂�𝑖)2

∑(𝑥𝑖−�̄�𝑖)2

• MSE = ∑(𝑥𝑖−�̂�𝑖)2

𝑁

• RMSE = √ ∑(𝑥𝑖−�̂�𝑖)2

𝑁
• MAE = ∑ |𝑥𝑖−�̂�𝑖|

𝑁
• MAPE = 1

𝑁 ∑ ∣ 𝑥𝑖−�̂�𝑖
𝑥𝑖

∣
Typically, the root means square of error (RMSE) and the mean absolute error
(MAE) are the most commonly used metrics.

Let’s see how the RMSE and the 𝑅2 metrics change when the polynomial degree
increases. To do that we build a table with three columns:

1. the degree of the polynomial
2. the 𝑅2 value
3. the RMSE value

We extract these data from the list of linear models above created, fits. For
each fitted linear model (an entry in fits), the 𝑅2 and RMSE can be extracted
with the functions rsquare() and rmse(), respectively.

We use map_dbl() to map these functions over the list of polynomial degrees.
The resulting table is then used to make a plot:
tibble(
degree=c(1,deg), # deg starts from 2!
rsquare=fits %>% map_dbl(~rsquare(., data)),
rmse=fits %>% map_dbl(~rmse(., data))

) %>%
ggplot(aes(x=degree)) +

5

geom_line(aes(y=rmse), color="blue") +
geom_line(aes(y=rsquare*4), color="red") +
scale_y_continuous(sec.axis = sec_axis(
\(x) scales::rescale(x, from=c(0,4), to=c(0,1)),
breaks=seq(0, 1, 0.1),
name="R squared"))

2

3

4

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2.5 5.0 7.5 10.0 12.5
degree

rm
se

R
 squared

The 𝑅2 increases pretty quickly and saturates after degree 3. The RMSE de-
creases sharply and monothonically. It’s hard to figure out the point where
overfitting starts.

4 K-fold cross-validation
To solve the problem we use K-fold cross validation. It is a regression strategy
where we split the dataset into 𝑘 subsets, or folds, with roughly the same amount
of observations. Then:

• we train the model over all the folds together except the first fold, and
then we validate the model on the first model, i.e. we calculate one or
more metrics on the validation data

• we repeat the previous step setting aside each fold, one at a time, and
using it for validation, while the remaining folds are used for training

• each fold is used exactly once for validation, exactly 𝑘−1 times for training
• we calculate the overall metrics, by calculating the average of the 𝑘 metrics

evaluated for each validation step, or — equivalently — by appliying the
above reported equations to the whole set of validation values

6

In R, we use the caret library to simplify this process. The caret::train()
function performs the folding for a given model: it takes as arguments the model
formula, the regression function (in our case lm()), the dataset, and a list of
parameters that can be created with the supporting trainControl() function.

The trainControl() function is used to define the details on the cross validation
strategy to use. In our case we use the repeated K-fold cross validation, named
"repeatedcv", which repeates a K-fold a given number of times.

In fact, the folds are defined by randomly sampling the initial dataset, so that
the resulting RMSE (or any other metric) is also a random variable. Repeating
the K-fold 100 times makes the whole process more robust:
ctrl <- trainControl(method = "repeatedcv", number=5, repeats=100)
model <- train(y~poly(x,8), data=data, method="lm", trControl=ctrl)

model

Linear Regression

25 samples
1 predictor

No pre-processing
Resampling: Cross-Validated (5 fold, repeated 100 times)
Summary of sample sizes: 20, 20, 21, 20, 19, 20, ...
Resampling results:

RMSE Rsquared MAE
10.3213 0.9241026 6.25129

Tuning parameter 'intercept' was held constant at a value of TRUE

The model object contains a field named model$results that is a table with
all the available performance metrics:

intercept RMSE Rsquared MAE RMSESD RsquaredSD MAESD
TRUE 10.3213 0.9241026 6.25129 23.37541 0.1183862 12.14192

Now we want to repeat the K-fold validation over the list of formulas corre-
sponding to the set of polynomials with degrees from 1 to 12. We use again the
map() function:
fit_quality <- tibble(
degree=c(1,deg),
results=map(degree, function(n) {
fm <- paste0("y~poly(x,", n, ")") %>% as.formula()

7

train(fm, data=data, method="lm", trControl=ctrl)$results
})

) %>%
unnest(cols=results)

Note the unnest() function at the end: the model field $results is actualy a
table, so without that function in fit_quality we would get a column results
that contains a list of tables. The unnest() function flattens this list of tables
in place.

Now we can finally make a plot of the metrics as a function of the polynomial
degree:
fit_quality %>%
select(-intercept, -starts_with("Rsquared")) %>%
pivot_longer(-degree, names_to = "metric") %>%
ggplot(aes(x=degree, y=value, group=metric, color=metric)) +
geom_line() +
geom_point() +
scale_y_log10() +
scale_x_continuous(breaks=c(1,deg))

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12
degree

va
lu

e

metric

MAE

MAESD

RMSE

RMSESD

We observe that the minima of any metric happens at degree 3. This means
that below that value we have underfitting, above we have overfitting (i.e. the
model is loosing generality).

8

5 Regression
So we can finally accept the model 𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑐𝑥2

𝑖 + 𝑑𝑥3
𝑖 + 𝜀𝑖 (a degree 3

polynomial in 𝑥𝑖):
data.lm <- lm(y~poly(x, 3), data=data)

data %>%
add_predictions(data.lm) %>%
ggplot(aes(x=x, y=y)) +
geom_point() +
geom_line(aes(y=pred))

0

20

40

60

0 25 50 75 100
x

y

data %>%
add_residuals(data.lm) %>%
ggplot(aes(x=x, y=resid)) +
geom_point()

9

−4

−2

0

2

0 25 50 75 100
x

re
si

d

We confirm that the residuals are free from patterns. We can also plot a con-
fidence interval of the same regression by using the geom_smooth() layer in a
ggplot:
data %>%
ggplot(aes(x=x, y=y)) +
geom_point() +
geom_smooth(method="lm", formula=y~poly(x, 3))

0

20

40

60

0 25 50 75 100
x

y

10

	Loading the data
	Linear model regression
	Multiple regressions
	K-fold cross-validation
	Regression

